MUCHINGA PROVINCE JETS FAIR,2014

THEME:GOLDEN JUBILLE:RECOGNIZING SCIENTISTS AS A DRIVING FORCE F OR NATIONAL DEVELOPMENT

ANSWER ALL QUESTIONS

QUESTION 1

Fig.1.0. shows an electrical circuit.

Fig.1.0

The resistance of the lamp is 4.0 ó when it is at its normal brightness.
(a) The lamp is rated at $6.0 \mathrm{~V}, 9.0 \mathrm{~W}$.

Calculate the current in the lamp when it is at its normal brightness.
(b) The sliding contact C is moved to A . The lamp lights at its normal brightness.

Calculate
(i) the total circuit resistance,
(ii) the potential difference across the 4.0 ó resistor .
(c) The sliding contact C is moved from A to B.
(i) Describe any change that occurs in the brightness of the lamp.
(ii) Explain your answer to (i).
(d) The 1 m wire between A and B , as shown in Fig. 8.1, has a resistance of 2.0 ó.

Calculate the resistance between A and B when
(i) the 1 m length is replaced by a 2 m length of the same wire,
(ii) the 1 m length is replaced by a 1 m length of a wire of the same material but of only half the cross-sectional area.
2. (a) The neutrons and protons in a stable nucleus are held together by nuclear forces and energy is needed to break them apart. What name is given to this energy?
(b) Consider the following reaction.

$$
{ }_{92}{ }^{235} \mathrm{U}+{ }_{0}{ }^{1} \mathrm{n} \longrightarrow{ }_{57}{ }^{148} \mathrm{La}+35{ }^{85} \mathrm{Br}+2{ }_{0}{ }^{1} \mathrm{n}+\text { energy. }
$$

(i) What type of reaction is shown by the reaction above? Give a reason for your answer [2]
(ii) What is the mass defect of this reaction?
(iii) What energy in joules is released by the above reaction? Given that:
$1 \mathrm{u}=931 \mathrm{MeV}$.
$1 \mathrm{MeV}=1.9 \times 10^{-19} \mathrm{j}$.
Mass of $\mathrm{La}=148.0 \mathrm{u}$.
Mass of $\mathrm{Br}=85.0 \mathrm{u}$.
Mass of $U=235.1 u$.
Mass of 1 neutron $=1.009 \mathrm{u}$.
(c) Calculate the binding energy in MeV of a helium nucleus if the mass of the proton and netron have masses of 1.0073 u and 1.0087 respectively. [Mass of helium nucleus $=4.0015 \mathrm{u}, 1 \mathrm{u}=193 \mathrm{MeV}$] [3]
(d) Define chain reaction.
3. A student was investigating kinetic and static friction of a surface using a wooden block. They placed the block at one end which is slowly turned until the block just started sliding. This happened at the angle of 40° as illustrated by the diagram below.

(a)(i) Distinguish between static and kinetic friction.
(ii) How can you demonstrate that static friction is greater than kinetic friction?
(b) Calculate the static friction of the experiment.
(c)(i) State the force which works to slide the block.
(ii) Calculate the work done by the force in c (i) above.
(d) If the static friction is 10% greater than the kinetic friction, determine the final velocity of the block.
4. 4. The radioactive isotope ${ }_{55}{ }^{137} \mathrm{Cs}$ emits a beta particle to become the isotope ${ }_{\mathrm{b}}^{\mathrm{a}} \mathrm{Ba}$.
a. i. What is meant by the term isotope?
ii. Explain the meaning of the term superscript 137 and subscripts 55. [2]
iii. State the value of a and b.
b. State the nature of each of the following radiations.
i. Gamma radiation
ii. Beta radiation
iii. Alpha radiation
c. When radiation passes through matter, it may cause ionization.
i. Explain briefly what is meant by ionization.
ii. Which of the radiations in (b) will produce the greatest amount of ionization per centimeter of path length?
d. Polonium ${ }_{84}{ }^{210} \mathrm{Po}$ decays to lead ${ }_{82}{ }^{206} \mathrm{~Pb}$ by the reaction

$$
{ }_{84}{ }^{210} \mathrm{PO} \longrightarrow \quad{ }_{82}{ }^{206} \mathrm{~Pb}+{ }_{2}^{4} \mathrm{He}
$$

The atomic masses are:
Polonium $3.485 \times 10^{-25} \mathrm{~kg}$
Lead $3.418 \times 10^{-25} \mathrm{~kg}$
Helium $0.066 \times 10^{-25} \mathrm{~kg}$
The speed of light c in vacuum is $3 \times 10^{8} \mathrm{~m} / \mathrm{s}$. estimate the energy released when an atom of Polonium -210 decays.
5. a. A block of metal of mass 0.5 kg initially at a temperature of $100^{\circ} \mathrm{c}$ is gently lowered into an insulated copper containers of mass 0.05 kg containing 0.9 kg of water at $20^{\circ} \mathrm{c}$. if the final temperature of the mixture is 25° c. calculate the specific heat capacity C of the metal block. (assume no loss of heat and no water is vapourized)
b. A double walled flask containing water is heated with a 16 W heater and it is found that it takes 30 minutes for the temperature to rise from $20^{\circ} \mathrm{c}$ to $100^{\circ} \mathrm{c}$.
I. estimate an upper limit for the value of specific heat capacity of the inner flask and its contents.
II. Calculate the mass of water that could be vaporized after 30 minutes of steady heating when power is supplied at a rate of 60 W . take the specific latent heat of vaporization of water to be $2.26 \times 10^{6} \mathrm{Jkg}^{-1}$. Specific heat capacity of i) water 4200 J
ii) copper/container -385J
6. (a) in relation to projectile motion define the following terms:
(i) Range
[1 MARK]
(ii) Time of flight
[1 MARK]
(iii) Projectile
[1 MARK]
(iv) Maximum height
[1 MARK]
(b) A ball is hit with a velocity of $5 \mathrm{~m} / \mathrm{s}$ at an angle of 60° to the horizontal. Consider the t figure shown below.

Use the figure above to calculate the following: take $g=10 \mathrm{~m} / \mathrm{s}^{2}$
i) The time of the flight.
[3 MARKS]
ii) The maximum height
[3 MARKS]
iii) The range
[3 MARKS]
c) Another ball is projected so as to attain a maximum range. Find the maximum height attained if the initial velocity is $12 \mathrm{~m} / \mathrm{s}$. take g to be $10 \mathrm{~m} / \mathrm{s}^{2}$.
[3 MARKS]

PHYSICS OLYMPIADS SOLUTIONS 2014

Marking schemes for question 1

(a) $\mathrm{I}=\mathrm{W} / \mathrm{V}$ or $9 / 6$
$\mathrm{I}=1.5 \mathrm{~A}$
(b) (i) 8 ohm
(ii) 6 V
(c) (i) brightness decreases/dimmer B1
(ii) resistance of circuit greater current through lamp falls
(d) (i) 4 ohm A1
(ii) 4 ohm

MARKING SCHEME FOR QUESTION 2

(a) The energy is called binding energy. [2]
(b) (i)Fission reaction. Because the nucleus is being split into smaller nuclei.

$$
\begin{aligned}
\text { (ii)mass defect } & =\text { mass of reactants }- \text { mass of products. } \\
& =235.1 \mathbf{u}-(148 \mathbf{u}+85 \mathbf{u}+1.009 \mathbf{u}+1.009 \mathbf{u}) \\
& =235.1 \mathbf{u}-235.018 \mathrm{u} \\
& =\underline{\underline{0.982 u}}
\end{aligned}
$$

(iii)energy $=$ loss in mass

Energy $=0.982$ u [1]
Since $1 \mathbf{u}=\mathbf{9 3 1 e V}$
$0.982 \mathrm{u}=\mathrm{x}$
$\mathrm{X}=0.982 \mathrm{u} \times 931 \mathrm{eV}$
$\mathrm{X}=914.242 \mathrm{eV}$ [1]
Energy in J = 914.242 eV x $1.9 \times 10^{-19} \mathbf{J}$
Energy =
C. Binding energy $=$ mass of nucleons - mass of nucleus

$$
\begin{align*}
& =4.032 u-4.0015 u \tag{2}\\
& =0.0305 u
\end{align*}
$$

Therefore: energy $=0.0305 \mathrm{u} \times 931 \mathrm{mev}$
Energy $=28.395 \mathrm{mev}$
Energy $\mathbf{=} 28.4 \mathbf{m e v}$ [3]
D.A chain reaction is a self perpetuating rapid reaction that occurs during nuclear fission. [2]

3. MARKING KEY FOR QUESTION 3

a. i. static friction operates between the surfaces of an object at rest; kinetic friction operates in an object in motion.
Ii. When an object just starts moving, the operating force can be reduced to maintain a constant speed.
b. force diagram, if static friction is U_{s} $U_{s}=W x, W x$ is the weight component that just covered U_{s}

$$
\begin{aligned}
U_{s} & =20 \mathrm{~N} \times \operatorname{Sin} 30^{\circ} \\
& =20 \mathrm{~N} \times 0.5 \\
& =\underline{10 \mathrm{~N}}
\end{aligned}
$$

c. i. the pull of gravity on the block

$$
\begin{aligned}
\text { ii } W & =F \times S ; F=W \mathbf{F} ; S=0.5 \mathrm{~m} \\
W x & =W \sin 30^{\circ} \\
& =20 \mathrm{~N} \times 0.5 \\
& =10 \mathrm{~N} \\
W & =10 \mathrm{~N} \times 0.5 \mathrm{~m} \\
& =5 \mathrm{~J}
\end{aligned}
$$

d. let kinetic friction be U_{k}; then $U_{k}=0.9 U_{s}=(1-0.1) U_{s}$
the resultant $F, F=W x-U_{k}=\mathbf{m x a}$
$\mathrm{U}_{\mathrm{s}}=10 \mathrm{~N} ; \mathrm{U}_{\mathrm{k}}=0.9 \times 10 \mathrm{~N}=9 \mathrm{~N}$
$\mathbf{F}=\mathbf{W x}-\mathbf{U}_{\mathrm{k}}$
$=10 N-9 N$
$=1 \mathrm{~N}$
Therefore, $\mathbf{1 N}=\mathbf{2 k g x a}$
$\mathrm{A}=0.5 \mathrm{~m} / \mathrm{s}^{2}$
But $V^{2}=U^{2}+2$ as
$\mathrm{U}=0$;
$\mathrm{A}=0.5 \mathrm{~m} / \mathrm{s}^{2}$
$S=0.5 \mathrm{~m}$
$V^{2}=0^{2}+2 \times 0.5 \times 0.5$
$\mathrm{V}^{2}=0.50 \mathrm{~m}^{2} / \mathrm{s}^{4}$
$\mathrm{V}=0.71 \mathrm{~m} / \mathrm{s}$

ANSWER FOR QUESTION 4

4. i. atoms of the same element with the same proton number but different nucleon number of neutrons.
ii. 137 is the sum of protons and neutrons in one atom of the isotope. 55 is the number protons in one atom of the element.

iii. $\mathbf{a}=\mathbf{1 3 7} \quad b=56$.

b. i. Gamma radiation is electromagnetic radiation.
ii. Beta radiation consists of electrons.
iii.Alpha radiation consists of helium nuclei.
c. i. the loss or gain of electrons by an atom to become an ion.
ii. Alpha radiation [3 marks]
d.Total mass of fragments $=3.418 \times 10^{-25}+0.066 \times 10^{-25}=3.484 \times 10^{-25}$
mass defect $=3.485 \times 10^{-25}-3.484 \times 10^{-25}=1 \times 10^{-28}$
$\mathbf{E}=\mathbf{m c}^{\mathbf{2}} \quad$ [1 mark]
$E=1 \times 10^{-28} \times\left(3 \times 10^{8}\right)^{2}=9 \times 10^{12} \mathrm{~J}$

ANSWERS FOR OUESTION 5

a. $\Delta H=\operatorname{Mc} \Delta T / Q=\operatorname{Mc} \Delta T$
$=0.5 \times \mathrm{c} \times(100-25)$
$=0.5 \times \mathrm{c} \times 75$
$=\underline{37.5 \mathrm{c}}$ heat lost by the block. [2 marks]

Heat gained by water and container
$\Delta H=M c \Delta T+M c \Delta T$
$0.9 \times 4200 \times(25-20)+0.05 \times 385 \times(25-20)$
$(0.9 \times 420 \times 5)+(0.05 \times 385 \times 5)$
$18900+96.25$
18996. 25J [3 marks]

Therefore: $\underline{\mathbf{3 7 . 5 c}=\underline{18996}}$
$37.5 \quad 37.5$
$C=\underline{18996}$
$\mathrm{C}=506.6 \mathrm{~J} / \mathrm{kg} / \mathrm{k} \quad$ or $\quad 506.6 \mathrm{Jkg}^{-1} \mathrm{~K}^{-1} \quad[2 \mathrm{marks}]$
b. i. $\mathrm{E}=\mathbf{P t}$

$$
=16 \times 30 \times 60
$$

$$
=28.800 \mathrm{~J} \quad[1 \mathrm{mark}]
$$

Assuming not heat is lost the upper limit for the specific heat capacity of the inner flask and contents would be:

$$
\begin{aligned}
& \mathrm{C}=\underline{\mathrm{Pt}} \\
& \underline{\Delta T} \\
& \mathrm{C}=\underline{28800}
\end{aligned}
$$

$$
\overline{100-20}
$$

$$
\mathrm{C}=\underline{28800}
$$

$$
80
$$

$$
\mathrm{C}=360 \mathrm{~J} / \mathrm{Kg} / \mathrm{K} \quad \text { or } \quad 360 \mathrm{~J} \mathrm{Kg}^{-1} \mathrm{~K}^{-1} \quad \text { [2 marks] }
$$

$$
\begin{aligned}
& \text { ii. } \mathrm{E}=\mathrm{Pt} \\
&=60 \times 30 \times 60 \\
&=108000 \mathrm{~J} \quad[1 \mathrm{mark}] \\
& \Delta H=\mathrm{P}_{2} \mathrm{t}_{2}-\mathrm{P}_{1} \mathrm{t}_{1} \\
& 108000 \mathrm{~J}-28800 \mathrm{~J}
\end{aligned}
$$

79200 J [1 mark] Energy available to vaporize the water.
Therefore:

$$
\begin{aligned}
& \mathrm{Mw}=\underline{79200} \\
& 2.26 \times 10^{6} \\
&=3.5 \times 10^{-2} \mathrm{Kg} \\
&=3.5 \mathrm{~g} \quad[2 \text { marks }]
\end{aligned}
$$

